How to Build a 2D and 3D Aerial Multispectral Map?

Multispectral maps go beyond human vision, capturing data across various electromagnetic wavelengths, providing detailed insights into Earth's surface.

What are 2D and 3D multispectral maps, and why are they so valuable?

The 2D and 3D multispectral maps are an advanced way of capturing data beyond human vision, offering detailed views of Earth’s surface. Specialized cameras collect images across various wavelengths, including infrared and near-infrared, revealing details invisible to the naked eye. These details, like healthy vegetation or heat variations, are captured because each spectral band targets specific elements on the ground. Through sophisticated processes like aerial data collection and digital modeling, multispectral maps have become powerful tools for science, resource management, and policy. They bridge the gap between what we see and hidden patterns in our environment, representing a significant technological leap in understanding our planet. The key advantage is a multilayered perspective, offering insights invisible to the naked eye. This powerful technology is essential for many fields. In agriculture, it helps farmers monitor crop health and use water more efficiently. For environmental conservation, it allows us to track deforestation and protect our forests. In urban planning, it helps identify areas that trap heat and guide sustainable development.

2D and 3D Aerial Multispectral Map - mapping scene with UAV

Prior efforts, limitations and evolution in photogrammetry & remote sensing

The field of photogrammetry and remote sensing has long been instrumental in mapping and analyzing the Earth’s surface. Traditional methods predominantly relied on direct photographic techniques and basic satellite imagery to gather spatial information. Existing methods laid the groundwork for environmental applications, but they struggle to capture the intricate details needed for in-depth analysis. This hinders our ability to fully understand complex environmental issues.

Advancements in Methodologies: SfM and MVS

2D and 3D Aerial Multispectral Map

Limitations of Traditional Methods

Limitations of traditional methods were recognized. The scientific community responded by adopting SfM and MVS – more sophisticated methodologies. These advancements deliver substantial improvements in the quality and usefulness of spatial data.

Both SfM and MVS represent significant advancements in our ability to generate high-resolution, accurate, and multi-dimensional maps and models of the Earth’s surface. New methodologies overcome many limitations of traditional photogrammetry and remote sensing techniques. This advancement opens up new possibilities for in-depth environmental analysis. Empowered by these methods, scientists and researchers can now explore and understand the complex dynamics of natural and built environments. The result? Unprecedented clarity and detail are revealed.

Methodology of generating multispectral maps

Generating 2D and 3D multispectral maps relies on a carefully structured methodology. This method first involves a series of procedures. These procedures seamlessly integrate advanced imaging techniques with sophisticated data processing. Ultimately, this process translates aerial imagery into detailed, multidimensional representations of the Earth’s surface. Below are the steps:

Data Load/Input

Airborne platforms equipped with imaging sensors collect aerial images. These images form the crucial first step in creating 2D and 3D multispectral maps, which capture Earth’s surface in detail. This stage is instrumental in gathering raw data, which forms the basis for all subsequent analysis and modeling.

Structure from Motion (SfM)

The transition from the Data Load/Input phase to the Structure from Motion (SfM) step in the creation of multispectral maps is a seamless progression that hinges on the preparation and systematic organization of the collected aerial imagery. This transition is facilitated through a series of interconnected actions and analyses that prepare the dataset for complex 3D modeling.

2D and 3D Aerial Multispectral Map - 3d aerial view

Multi-View Stereo (MVS)

Meshing Reconstruction

Following the MVS process, the detailed transformation from space function definitions through to the extraction of isosurfaces takes place. This step creates a mesh representation of the model, adding surface details and textures to the previously constructed depth model.

The SfM and MVS processes, along with meshing reconstruction, together create a workflow that transforms sets of aerial images into detailed, textured 3D models.This approach combines two types of information to create highly accurate scene reconstructions. It uses geometric data from individual images and depth data obtained by analyzing image pairs.

Meshing Reconstruction

Following the MVS process, the detailed transformation from space function definitions through to the extraction of isosurfaces takes place. This step creates a mesh representation of the model, adding surface details and textures to the previously constructed depth model.

The SfM and MVS processes, along with meshing reconstruction, together create a workflow that transforms sets of aerial images into detailed, textured 3D models. This advanced method combines the shapes from single images with depth data from pairs of pictures. This results in incredibly precise 3D models of the photographed scene.

beXstream 3d image

Texturing Reconstruction

After the creation of a 3D model via SfM, MVS, and meshing reconstruction, texturing reconstruction is the process that brings the model to life by adding realistic surface details.


Geo-referencing is the process of aligning the textured 3D model with real-world geographic coordinates, crucial for ensuring the model accurately represents the physical location and orientation of the surveyed area.

Aligning the model ensures it matches real-world locations, making it compatible with other geographic data. This unlocks its potential for practical uses like urban planning, environmental monitoring, and navigation.

Orthomap creation

Experimental Results: Practical Applications and Challenges

The outlined method for 2D and 3D multispectral maps, using RGB, multispectral, and thermal data, has shown major improvements in environmental monitoring, agriculture, and urban planning. Applying a comprehensive workflow of data collection, SfM, MVS, texturing, and geo-referencing produced detailed and accurate landscape models. These models serve multiple purposes, from assessing crop health and irrigation needs in agriculture to enhancing studies of urban heat islands and environmental conservation efforts.

2D and 3D Aerial Multispectral Map - 3d aerial view

Challenges Encountered and Solutions

We encountered challenges during applying this methodology. These challenges included handling the massive amount of data, ensuring the accuracy of the 3D models, and dealing with the complexities of thermal imaging. Below is an analysis of these challenges and the solutions implemented to address them:

Data Volume and Processing Time:

Challenge: High-resolution aerial images for detailed 2D and 3D maps require a massive amount of data. This puts a strain on computer processing power, resulting in long wait times to create the maps.

Solution: Optimization techniques were applied to streamline data processing, including parallel processing and cloud computing resources. Additionally, algorithms were refined to efficiently manage and process large datasets, effectively reducing the time required for model generation.

Accuracy of 3D Models:

Challenge: Ensuring the spatial accuracy of 3D models, especially in complex environments with diverse terrain and vegetation, proved to be a substantial hurdle.

Solution: Enhanced calibration methods and advanced feature matching algorithms were employed to improve the precision of 3D reconstructions. The integration of ground control points (GCPs) and rigorous post-processing validation also contributed to achieving high levels of model accuracy.

2D and 3D Aerial Multispectral Map - mapping

Thermal Imaging Integration:

Challenge: Incorporating thermal imaging into the multispectral mapping process was challenging due to the low contrast and featureless nature of thermal images, making feature detection and matching difficult.

Solution: To improve feature visibility in thermal images, for example as seen in our sustainable vineyard resource management research studies, we developed specialized preprocessing steps. We then adopted a hybrid approach, combining thermal data with RGB and multispectral imagery to maximize the strengths of each type. This approach allowed us to successfully integrate thermal information into multispectral maps, revealing valuable insights into temperature variations and heat sources.

Environmental Conditions and Lighting Variability:

Challenge: Varying lighting conditions and environmental factors such as cloud cover and shadows affected the consistency and quality of the aerial images.

Solution: Strategic planning of data collection missions to coincide with optimal lighting and weather conditions was implemented. Where inconsistencies were unavoidable, advanced image processing techniques, including radiometric calibration and shadow compensation, were applied to normalize the data.

Implications of the Experimental Results

Experiments highlight the power of multispectral maps for understanding our world. This detailed data, acquired through advanced techniques, opens doors for environmental analysis, optimizing agriculture, and sustainable urban planning. By capturing beyond the visible spectrum, these maps reveal crucial insights for monitoring ecosystems, managing water, and planning sustainable cities. The versatility of these maps, captured with beXStream cloud-based drone remote control, underlines their value across various fields, from detecting subtle changes in vegetation to identifying heat signatures in urban areas.

Effectiveness of the Adopted Methodologies

The methodologies employed in this study, particularly those adapted from OpenDroneMap’s workflow, have proven to be highly effective in generating accurate and detailed multispectral maps. The integration of Structure from Motion (SfM) and Multi-View Stereo (MVS) techniques, alongside advanced texturing and georeferencing processes, facilitated the creation of high-resolution 3D models from aerial imagery. The successful application of these methodologies underscores the importance of a comprehensive and integrated approach to data processing in remote sensing. By leveraging OpenDroneMap’s open-source tools, the study benefited from a robust and community-supported platform, enabling efficient processing of large datasets and the production of highly detailed spatial models. This validation of OpenDroneMap’s workflow within the context of multispectral mapping highlights its potential as a valuable tool for researchers and professionals in the field.

2D and 3D Aerial Multispectral Map - 3d aerial view

Future Directions for Research and Application

The field of aerial multispectral mapping is poised for breakthroughs. Future research could refine data processing algorithms, particularly for large-scale projects, to boost speed and accuracy of model generation. Moreover, integrating machine learning and AI could offer new methods for feature detection and classification, potentially automating parts of the process and revealing hidden patterns. Additionally, exploring diverse data sources like LiDAR and SAR data could enhance the multidimensional analysis capabilities of 2D and 3D multispectral maps. On the application side, multispectral mapping holds vast potential to contribute to climate change research, disaster response planning, and biodiversity conservation, among other pressing global challenges. As technology and methodologies evolve, so too will their applications, promising richer insights and more effective solutions for various environmental and societal issues.

Key Points

Related Questions

What makes multispectral maps so valuable in agricultural management?

Multispectral maps capture data across multiple wavelengths, revealing details about crop health, soil moisture, and irrigation needs. This information makes them invaluable for agriculture, allowing farmers to precisely monitor crops and optimize practices. Learn more about precision farming.

Why were traditional remote sensing methods limited in environmental analysis?

Traditional remote sensing methods were limited by their spectral, spatial, and temporal resolution, along with a lack of dimensionality. These limitations restricted the depth and accuracy of environmental analyses, making it difficult to capture the nuanced details necessary for comprehensive studies. beXStream cloud platform makes it easy for data acquisition and analysis.

How do SfM and MVS methodologies improve the creation of 3D models?

Structure from Motion (SfM) and Multi-View Stereopsis (MVS) significantly improve the resolution and accuracy of 3D models by analyzing multiple photographs from different viewpoints. This allows for the detailed reconstruction of the Earth’s surface in three dimensions, capturing intricate details that were previously unattainable.

Can you outline the key steps in generating a multispectral map from aerial images?

Generating a multispectral map involves several key steps: starting with the collection of aerial images, followed by Structure from Motion (SfM) for 3D modeling, Multi-View Stereo (MVS) for depth analysis, meshing reconstruction to create a mesh representation, and finally, texturing reconstruction to add realistic surface details to the model.

What were the main challenges in integrating thermal imaging into multispectral maps, and how were they resolved?

The main challenges in integrating thermal imaging included the low contrast and lack of distinct features in thermal images, making feature detection and matching difficult. Researchers addressed these challenges by first developing specialized preprocessing steps. These steps enhanced the visibility of features in the data. Then, they employed a hybrid approach. This approach combined thermal data with RGB and multispectral imagery for better integration.

How do multispectral maps contribute to urban planning and environmental conservation?

Multispectral maps contribute significantly to urban planning and environmental conservation by providing detailed insights into vegetation health, water stress, and urban heat islands. This information supports sustainable development practices, biodiversity conservation efforts, and efficient resource management.

What impact has the adoption of OpenDroneMap's workflow had on producing multispectral maps?

Adopting OpenDroneMap’s workflow has positively impacted the production of multispectral maps by offering an efficient, robust, and community-supported platform for processing large datasets. This has enabled the creation of detailed spatial models with enhanced accuracy and resolution.

What future advancements could improve multispectral mapping, and what impact might they have?

The future of multispectral mapping is bright! Researchers aim to refine data processing algorithms, integrate machine learning for automated feature detection. Most importantly, it aims to explore diverse data sources like LiDAR and SAR equipped with HEIFU pro or VTOne long range full electric VTOL. These advancements could revolutionize environmental monitoring, disaster response, and climate change research. Imagine richer insights and more effective solutions to global challenges!

Mr. André Vong

NOVA University of Lisbon

Dr. João P. Matos-Carvalho

Lusófona University, COPELABS

Mr. Piero Toffanin

Universidade ou Empresa

Dr. Dário Pedro

CEO & Software Team Leader @ BV

Mr. Fábio Azevedo

NOVA University of Lisbon

Prof. Filipe Motinho

Universidade ou Empresa

Prof. Nuno Cruz Garcia

Universidade ou Empresa

Dr. André Mora

FCT | NOVA University of Lisbon

Wondering what Beyond Vision can do for you?

Our Products




Quadcopter Ficed Wing


Remote Control Software


Fixed Base Station - GPS

Thank You!

Your application has been sent, keep an eye on your email. We will only contact you if you meet our requirements.
Learn more about us!